Telegram Group & Telegram Channel
Введение в машинное обучение с библиотекой Scikit-Learn в Python

Сегодня мы поговорим о машинном обучении и о библиотеке Scikit-Learn , которая является мощным инструментом для создания и обучения моделей машинного обучения в Python. Scikit-Learn предоставляет широкий спектр алгоритмов и инструментов для задач классификации, регрессии, кластеризации, и многих других. Это отличное введение в мир машинного обучения.

Что такое Scikit-Learn?
Scikit-Learn (sklearn) - это библиотека машинного обучения для Python, которая предоставляет простой и единый интерфейс для множества алгоритмов машинного обучения. Она поддерживает задачи как классификации, так и регрессии, а также кластеризации, извлечение признаков, и многое другое. Scikit-Learn также включает в себя множество инструментов для предобработки данных и оценки производительности моделей.

Для чего можно использовать Scikit-Learn?
1. Классификация: Scikit-Learn предоставляет множество алгоритмов классификации, таких как метод опорных векторов (SVM), случайные леса, наивный байесовский классификатор, логистическая регрессия и другие. Эти алгоритмы позволяют решать задачи бинарной и многоклассовой классификации.

2. Регрессия: Scikit-Learn поддерживает регрессию, что позволяет создавать модели для прогнозирования числовых значений. Линейная регрессия, регрессия на основе деревьев, и множество других методов доступны для решения задач регрессии.

3. Кластеризация: Для задач кластеризации, Scikit-Learn предоставляет алгоритмы, такие как K-средних, иерархическая кластеризация, агломеративная кластеризация и многое другое. Эти методы позволяют группировать данные на основе их сходства.

Scikit-Learn предоставляет множество инструментов для выбора, настройки и оценки моделей машинного обучения. Она идеально подходит для начинающих и опытных разработчиков, желающих погрузиться в мир машинного обучения.



tg-me.com/python_academy/1993
Create:
Last Update:

Введение в машинное обучение с библиотекой Scikit-Learn в Python

Сегодня мы поговорим о машинном обучении и о библиотеке Scikit-Learn , которая является мощным инструментом для создания и обучения моделей машинного обучения в Python. Scikit-Learn предоставляет широкий спектр алгоритмов и инструментов для задач классификации, регрессии, кластеризации, и многих других. Это отличное введение в мир машинного обучения.

Что такое Scikit-Learn?
Scikit-Learn (sklearn) - это библиотека машинного обучения для Python, которая предоставляет простой и единый интерфейс для множества алгоритмов машинного обучения. Она поддерживает задачи как классификации, так и регрессии, а также кластеризации, извлечение признаков, и многое другое. Scikit-Learn также включает в себя множество инструментов для предобработки данных и оценки производительности моделей.

Для чего можно использовать Scikit-Learn?
1. Классификация: Scikit-Learn предоставляет множество алгоритмов классификации, таких как метод опорных векторов (SVM), случайные леса, наивный байесовский классификатор, логистическая регрессия и другие. Эти алгоритмы позволяют решать задачи бинарной и многоклассовой классификации.

2. Регрессия: Scikit-Learn поддерживает регрессию, что позволяет создавать модели для прогнозирования числовых значений. Линейная регрессия, регрессия на основе деревьев, и множество других методов доступны для решения задач регрессии.

3. Кластеризация: Для задач кластеризации, Scikit-Learn предоставляет алгоритмы, такие как K-средних, иерархическая кластеризация, агломеративная кластеризация и многое другое. Эти методы позволяют группировать данные на основе их сходства.

Scikit-Learn предоставляет множество инструментов для выбора, настройки и оценки моделей машинного обучения. Она идеально подходит для начинающих и опытных разработчиков, желающих погрузиться в мир машинного обучения.

BY Python Academy




Share with your friend now:
tg-me.com/python_academy/1993

View MORE
Open in Telegram


Python Academy Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Python Academy from sg


Telegram Python Academy
FROM USA